PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Dynamical characterization of one-dimensional stationary growth regimes
in diffusion-limited electrodeposition processes
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The occurrence of stationary growth regimes in thin gap electrodeposition experiments is discussed in terms
of diffusion-limited dynamics and confirmed by a quantitative interferometric analysis of concentration fields
during copper electrodeposition in 20m cells, with unsupported electrolytes. We develop a 1D model for the
time evolution of the averaged concentration profile after Sand’s time and we check its predictions during the
transitory and asymptotic growth regimes in electrodeposition experinf&#863-651X98)15112-1

PACS numbg(s): 81.15.Pq, 68.35.Rh, 61.43.Hv, 42.87.Bg

[. INTRODUCTION the previous approaches and propose a complete set of equa-
tions for modeling steady growth regimes in electrodeposi-

The occurrence of diffusion-limited dynamics in growth tion. In a third section, we present an experimental demon-
experimentg 1] such as electrodeposition was suggested btration of the diffusive nature of these growth regimes by
theoreticians in the early eighties. The publication of thedirect measurements of concentration profiles with a Mach-
diffusion-limited aggregatiorfDLA) model by Witten and Zehnder interferometer. We show quantitatively the exis-
Sandef2,3] initiated many experimental attempts to recovertence of quasi-one-dimensional stationary regimes in thin
the type of morphologies that can be obtained with thisgap cells. We discuss the nature of the transitory regimes
model. Electrodeposition experiments proved to be particuleading to stationary growth regimes and the limit of appli-
larly well suited for such studies, precisely because of theifability of the 1D model to these intermediate phases.
(apparent simplicity and the richness and diversity of mor-
phologies that could be obtained with them.

Beyond the characterization of the scale invariance prop- Il. MODELING APPROACHES

erties of the morphologies of electrodeposition aggregates by the complete set of equations that describe diffusion-
sophisticated techniqués,4—6, the analysis of the transport |imited electrodeposition can be found in theoretical articles
mechanisms and their influence on th_e morphology leavegat appeared in the early eightigk3], focusing on the na-
many unanswered fundamental questions. Several attempigre of the initial instability of a flat surface by electrodepo-
[7-12] have been made to develop a clear picture of elecsition. We have also contributed recently by proposing a
trodeposition in thin gap geometries. These studies focus oRonstationary analysis of this instability in galvanostatic
dense branching morphologié3BM) that are characterized (fixed current regimes[14]. Here we focus on nonlinear
by a dense array of branches defining a flat front advancingrowth regimes, which occur at long times, beyond the in-
at constant velocity through the cell, as illustrated in Fig. 1stability. The study of these regimes can be simplified when
with copper deposits. Three examples of DBM, obtainedhe system reaches a quasistationary growth, that is, a flat
with three copper salt$a) copper nitrate(b) copper acetate, dense set of branches growing at constant velogite
and (c) copper chloride are reported in Fig. 1. Although the DBM).
DBM cannot be considered as homogeneous at small scales, The approaches of Fleust al. [9] and Melrosq10] rely
its growth dynamics has been described by a onefundamentally on a purely Ohmic model, which does not
dimensional (1D) process in the literature. Two types of account for the diffusion layer close to the cathode. Accord-
models have been considered independently. The first dhg to these authors, at a given current density, the conduc-
those[9,10] relies on the assumption that the electrochemicativity of the electrolyte imposes the electric field everywhere
cell behaves as an Ohmic conductor, and that transport df the cell. The speed at which the anions leave the neigh-
electroactive species is driven solely by electric forces. Théorhood of the cathode is_ ~u_E whereu_ is the mobil-
second moddl12] is more general since it accounts for both ity of the anions ande the bulk electric field. The interfacial
diffusion and electric forces and it is built on the assumptionvelocity is slaved to the speed of the anions to prevent the
of local electroneutrality on distances beyond the doublelepletion of anions close to the cathode and the consequent
layer. Despite their apparent differences, these two model®ormation of a space charge, introduced in this context by
lead their authors to identical conclusions, in particular, forChazalviel[7]: in order to avoid the formation of large elec-
the expression of the growth velocity with respect to the bulkiric fields, the cathode must grow at the withdrawal speed of
electric field. the anions. The velocity of the interface is thegeosit

In this paper, we aim at demonstrating, based on experi=-u_E. With this assumption, Fleurgt al. [9] infer the de-
mental interferometric measurements of concentration mapgendence of the growth speed and the copper ratio of the
that these stationary growth regimes can be fully described ideposit(its density with respect to current density and bulk
terms of diffusion-limited processes. In Sec. Il, we reviewelectrolyte concentration. These predictions have, moreover,
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wherevy, is the speed of the electrode relative to the sur-

rounding fluid and* the transference number of the cations

tt=z.D,/(z;D,—z_D_)=z,u,/(z,u,—z_u_). This

equation is straightforwardly obtained through the assump-
- tion that the interfacial flux of anions is zef@0]. The sec-

5 mm ond boundary equation describes the local conservation of

copper species during the electrodeposition:

FIG. 1. Morphologies of copper deposits obtained with
different anions(a) [Cu(NO5;),]=0.5 mol I'%, j=50 mA cm 2, (b) . R .
[CUCH,CO0),]=0.2 mol I}, j=12 mAcm 2, (c) [CuCL]=0.5 ~Pcoppel - N=MJ ¢ -1, 4

mol 171, j=27 mAcm™2 )
where M is the molar mass of coppepcopper the copper

Eensity of the deposit, andl the normal to the deposit inter-
ace

In this section, we assume that the system rapidly con-
dverges towards a stationary growth regime and we analyze
the properties of the growth in such a case. Before deriving
he analytical expression for the steady concentration profile,

been confirmed by thorough experimental study of coppe
electrodepositiof8—11].

In a more recent paper Bazdn2] analyzes electrodepo-
sition experiments in terms of a diffusive wave regulate
process and proposes a 1D stationary solution for diffusion

limited electrodeposition that was, incidentally, suggested b . ! ) .
Barkey in[15]. Our approach is closer to Bazant’s since we e WC_JUId like to point out sgveral Important ISSUES. In the
ollowing, we assume the existence of a 1D solution to Egs.

aim at demonstrating that there is no need for neglectini1 4 d i+ with th d . b
diffusion processes to recover the simple relation that link )~ ),_an compare it with the steady-state regime ob-
served in experiments. The 1D model is, by assumption, in-

the velocity of the cathode with the bulk electric field. In this =" L
section, we derive in a simpler way the equations obtained@rant along the d|.rept|on.of the electrode, whereas the ex-
by Bazan{12] perimental system is invariant only on the average or, more

. Ig)recisely, when averaged over scales that are larger than the

The modeling of single salt electrodeposition processes it = Ldi b f The f h
thin gap cellsgwhere buoyancy-driven convection can be ne-ypical distance between fingers. The fact that, upon averag-

glected[16—19) is founded on the assumption that electro-N9: the evolution equations look the same as Efjs-(4) is

neutrality prevails beyond the double layer, and that a singl y no means qb_viou_s_and should t.)e. considered as a first
diffusion equation can be recoveré®0] in the laboratory assumption. Thigimplicit) coarse graining of the equations
frame: has several consequencés:the densitypg,pper in EQ. (4)

has to be replaced by some effective dengityii) We have
shown in[14] that a flat advancing2D) front is unstable for
the set of equation&l)—(4). However, we show below that
. ) ) o o the 1D front solution of these equations matches quite well
In this equation an ambipolar diffusion coefficiel®  he experimentally observed advancing front, which is
={z,u,D_-z u_D,}/{z,u,—z u_j accounts for both clearly stable. This paradox can be understood if one as-
d_|ffu5|on ar_ld m.lgratlon since when electroneu_trallty is ful- sumes that the coarse graining procedure introduces addi-
filled the migration term inj,C becomes proportional to the tjona| stabilizing terms, probably dependent on the local cur-
diffusion term (Laplacian of the concentrationC=z,.C,  yature, that modify the linear stability analysis. Again this
=|z_|C_ is the equivalent concentratiol, andD_ are isgye is completely overlooked in the present paper, although
the diffusion coefficients corresponding, respectively, to thye think that its understanding will be a key issue in further
cations and anions, whereas andu_ stand for their mo- developments.
bility, u. =D .. /RT [20] andz, andz_ (algebraic quanti- In a general way, given the velocity of the 1D growth
ties) their respective charges. o (whether constant or nptone can write a coordinate change
The expressions of the flux density in the bulk of theg(t)=x—x(t)from=x—f})v(u)du, wherex is the direction
electrochemical celfar from the electrodgsead of the growth(one dimensionalandu (t) its velocity. Under
this coordinate change, the diffusion equati@h comprises
|Z¢|j¢= - Diﬁc—ziDiC§¢, (2 an additional term describing the translation of the frame:

3,C=DV2C. (1)

where ®=F ¢/RT is the nondimensional electric potential &tC=D(9§zC+v(t)a§C. )

(F is the Faraday constgntand the advection term is

neglected. We have adopted thiénotation for the moving frame. Given
The boundary conditions for fluxes and growth velocity the experimental evidence for constant growth speed regimes

are given by conservation laws and experimental constraintgseported in the literaturd,10], it seems reasonable to look

In the case of galvanostatic experiments, the flux density ofor a stationary solution of this partial differential equation in

cationsJ, is fixed to be proportional to the current density e moving frame:

on the interface. I, is the number of electrons exchanged

. = N2 F =
in the reduction reaction andthe current density, 9C=0=Dd,C+vd,C. (6)
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In this model, we make the hypothesis that the number ofjin E = — 8455|m= _ RT&ﬁ>|m/F. This equation is similar

exchanged electrons during the reduction process is equal {g those of Fleuryet al. [9], Melrose[10], and Bazanf12]
the charge of the cation to avoid discussing the reduction ofnq has been obtained under the assumption that the number
other species such as protdizd—24, which is far beyond  of exchanged electrons in the reduction process is equal to
the scope of this article. The boundary conditi@ reads  the charge of the cation. The difference between our ap-
] ~ ~ proach and the two first quoted references comes from the
I C|§=0U _ §§C|§=0 @) fact that we derive the equation for the growth velocity di-
rectly from the 1D equations and that, moreover, we show
g . that the predictions of the 1D model for the concentration
where J ., replacingJ, denotes the one-dimensional flux profile can be quantitatively checked against the experiment.
density in the moving frame. Equatid) can be straight- Equation(13) is nevertheless misleading because it gives the
forwardly solved, given the boundary concentrationsreader the feeling that the only relevant parameter is the mo-
C({—*)=C,=2,C,.. (C,.. is the initial bulk concentra- Pility of the anions. To derive the interfacial velocity, we
used only the value of the interfacial concentration gradient,
which depends on the current and on the mobilities of anions
and cationdD=f(u,,u_); t*=f(u, ,u_)]. Part of these

Z+J+|§:0:F__ 1_t+ 1_t+ 1

tion prior to growth and 'ngozco an arbitrary value. We
have shown previouslj14] that in galvanostatic deposition

xperiments, the fastest instability of the interf ri f : S
experiments, the fastest instability of the interface arises Oparameters are hidden when the velocity is expressed as a

small but non-null values o€, (prior to Sand’s time, de- : S
fined as the time when the interfacial concentration is equafl“”C"O” of the bulk electric field instead of the current den-

to zero[25]). The solution of Eq(6) for the concentration in sity, indeed, the bulk electric field is not an independent
the moving frame reads parameter contrary to the current density.

To conclude this section, in view of Sec. Ill D devoted to
_ D buoyancy driven convection systems, it is worth remarking
C({)=C.+(Cy—C.)e W | ;=—. (8)  that Eq.(13) can be directly deduced from Eqggl0) and
v (12), with the assumption that the 1D flux of cations is, under
Such an equation has previously been derived by Barke{e Stéady growth regime, independent of the space variable
[15] in a short note in 1990, and more recently by M. Bazanté: Which amounts to equating the flux of cations far from the
[12] with arguments similar to those developed here. Replacd™owth (beyond the diffusion laygmwith the flux of cations

ing the expressions far,C|,_o=(C..— Co)/l4 in Eq.(7),we ~ ON the interfaced, =j/(z.F).
recover the relation between the growth velocity and the cur-

rent density]: IIl. EXPERIMENTAL RESULTS

j A. Experimental setu
(9) p p

— _+t
v=—(1 t)FCw'

The experiments are performed in cells made of two

The mean density of the aggregate, averaged over the di-Cl0Sely spaced optical flat glass plate&\/4 over
rection of the electrode, is easily derived from E¢.and 20 %50 mnf), whose interspace is filled with a single metal

(9): p=MC../z, (1—t*), as previously found in Refd]. electrolyte, without a supporting electrolyte. Two straight
To relate the growth speed to the bulk electric field, we musParallel ultrapure copper, platinum, or silver wirés0 um
analyze the flux equations far from the deposit, where th&iameter, Goodfellow 99.0% purinare tightly confined be-

concentration gradient becomes negligible. In the movingWeen the two glass plates and play the role of both spacers
frame the flux equations read and electrodes. The solutions of copper nitrate, chloride, and

acetate(ACS reagent are prepared from deionized water,
|z+|3+= —Cv-D.9,C—2.D.Ca,D. (10) carefully cleaned of any trace of dissolved oxygen by bub-

T = o bling nitrogen through it for 1 h. All of the experiments are
The total current density is the sum of the partial currentoerformed at fixed current intensity and at room temperature

densities for each ion: (~20 °C). In all experiments, the anode is made of a pure
copper wire. With copper nitrate, the cathode is made of
jIF=2,3,+2.J_ silver and 1% CuGlis added to the QINO;), electrolyte to

5 o avoid the passivation of the cathode with copper hydroxide
=—(D,-D_)9,C—(z,D,—z_D_)Co,P. (1) prior to the onset of the growth. With copper chloride, a Pt
cathode improves its resistance to corrosion. With copper

Far from the cathode and the ano@g{: is negligible and acetate, the anodic compartment of the cell is filled by a

this equation models a purely Ohmic transport: dilute solution to avoid a precipitation of the salt due to
saturation effects by dissolution of the anode and the cathode
jIF=—(z,D,—2.D_)C..d®|, ... (12  is made of silvgr. _ o
A phase shift Mach-Zehnder interferometer is indepen-
The velocity is therefore dently used to resolve the concentration field, averaged
5 on the depth of the cell. A sketch of the phase shift
v=—(1-t")(z,D,~2-D_)3,P|, .. Mach-Zehnder interferometer can be found in R&6]. The

_ _ interference patterns are recorded through a charge-coupled
=-2z.D_9,®|; ..=z_Fu_E,, (13 device(CCD) camera coupled to a frame grablh26] with a
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FIG. 3. Temporal evolution of the voltage of the cell
[CUuNO,),]=0.5 mol ', j=65 mA cm 2. The time has been re-
scaled by Sand'’s timg;~33 s.
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They do not change much during this first stage so that the
5 mm cell potential exhibits a plateau at the beginning of the ex-
periment(Fig. 3, phasey).

FIG. 2. Four successive pictures of the electrodeposition clusters When the interfacial concentration approaches zero, the
superimposed to the isoconcentration contours obtained by thpotential progressively increasé¢shaseg in Fig. 3). This
phase-shift interferometry techniqu® t/ts=0.7, (b) t/ts=1.3,(c)  divergence is not really surprising and can be explained by
t/ts=8.9, (d) t/ts=10.[CUNO3),]=0.5mol I', j=48 mAcm > two types of arguments:(i) the Ohmic resistance of the

cathodic diffusion layer increases when the concentration de-
768x 512 pixel resolution. The great advantage of phasé:reases[ZS]; (ii) the Butler-VoI'mer equation prediqts an
shift versus standard interferometry comes from the fact thaf\crease of cathodic overpotential when ’the_ mterfac!al con-
it provides an accurate reconstruction of the whole concergentration decreases. Very close to Sand's time, the interface
tration map from a set of successive interference pictureaecom?ks hlghrl]y un.T,ItabEd4] and d%ev?logs Into a fodrest of h
recorded for shifted values of the phase difference betwee ne spikes. T e cell voltage suddenly decreases due to the
the two wave fronts of the interferometer, and that it can als Tﬁég ?r?ecigsgﬁnmgfs;hSe%g:i/ttigrYer;Z@;?nsﬁs(,)fclzlr?s.ti)ﬁ t dur
be used as an holographic interferomé¢gf]. Figure 2 illus- ; : , : o
trates the isoconcentration curves reconstructed from the i3 the expenment,_the Increase O.f the interfacial velocny
terferometric measurements at four successive times of th%nhances the porosity of Fhe depo.sn. The vo!tqge evolves in
electrodeposition of copper in a 58 gap cell. The differ- a complex way _durlng this selection regime; its shape de-
ence between these isoconcentration curves has been cho?@r@sz ?oncszeir??r:?:.s ection on the subsequent stationary re
equal to G/10 mol I'* for clarity of this illustration. The . . . : . e
cqnfinement of_the cell ensures the damping of the buoyanc%rgﬁin?;r?g:t:gne%gg’,v 2gr??ﬁaenghnéeg;?lc\gléigg;gli?d'ng
1rg/irr1n’cli) ivseg:;ctrglféa;lrg: '-Il'—rt:glslnzgeti 8; t:]h; c(e:j”isar;dl:/ch Fig. 3. Frpm the slope of the volltag(.a curve during t.his
greater than the zone inspected by interferomérymm) to Iste_r;tdy reg||me,don§. can geé an ssélmlazltlor) 0{ the d(_apc:;n ve-
get rid of any perturbation of the growth by anodic pro- ocity, as already discussed in Re@]. For instance, in the

experiment of Fig. 3, this velocity has been estimated to 5
cesses. . e X
pum/s, in agreement with its direct measurement from the
B. Descrintion of stati h reci digitized pictures of the growth~4.6 um/s) [9]. In Fig. 2
- Description of stationary growth regimes we show four successive snapshots of the copper deposit
in electrodeposition: experimental results

superimposed on the concentration isocontours computed
DBM are the result of at least four successive stages thdtom interferometric measurements. These pictures illustrate

bring a flat electrode into a dense forest of branched treeshe successive events discussed above: the interfacial deple-
such as shown in Fig. 1. These stages can be easily identifigihn [Fig. 2(@)], the destabilizatioiFig. 2(b)], and the sub-
from the temporal evolution of the cell potential, such assequent invasion of the cell by the copper findéfigs. Zc)
shown in Fig. 3. and 2d)]. We observe that the isoconcentration lines are
After the current is switched on, the cathodic interfacialroughly parallel to the electrode up to a few tens of microns
concentration begins to decrease. During this early stage, tha the tips of the “trees.” We also remark that the back sides
cathodic concentration profile can be quantitatively underof the “trees” are completely depleted in copper salt. With
stood as the solution of the diffusion equation with constanthis enlargement, two different scales can be distinguished.
interfacial flux [16]. The cell voltage results from both The smallest scale, which corresponds to the width of the
Ohmic drop and interfacial kinetic polarization contributions. spikes[Fig. 2(b)] which emerge from the electrode, can be
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FIG. 4. lllustration of the concentration profile extraction by t (s) t (s)

interferometry.(a) Snapshot of the 2D isoconcentration contours . ) ) .
with the deposit picture on which the location of the two section FIG. 5. Stationary growth regime in the electrodeposition of

planes has been addet) Concentration fronts corresponding re- COPPer acetatela) Concentration profiles extracted from experi-
spectively to section planes @) in dashed and dashed-dotted mental datdplain curve fitted by the exponential stationary profile

lines, and to the averagén gray of the concentration profiles LEG-(8)] (dashed curvestime interval between successive profiles:
along the direction of the electrode. In dotted lines, the occupatiof?30 S: The ratio of sites occupied by the aggregate is plotted with a

ratio of the deposit in the cell is also represented. The parametéfotted line.(b) Temporal evolution of the fitted diffusion lengtte)
values are identical to Fig.(d). Temporal evolution of the deposit length computed from the de-

posit picture(plain curve or from the fit of the experimental con-
) ] ] centration profiles with E8) (symbolg. The parameter values are
considered as a capillary length. It is much smalidrout ten  jgentical to Fig. 1b).

timeg than the average width of the final trees. The dense
branching morphology term can be invoked in this case beabscissa (the width of the electrode on the digitized pic-
cause the distance separating two neighboring trees is mudtre), is reported with a dotted line. The plateau in the ag-
smaller than their height in Fig.(@). gregate occupation ratio profile beyond 1 mm indicates that
In all the experiments discussed hereafter, the length othe growth has reached a stationary regime. The front part of
the diffusion layer(depletion zongis much greater than the this occupation ratio profiléfront of the deposjt shows a
thickness of the cell. Since, moreover, the transport is diffudecay that depends on the fluctuations in the sizes of the
sive, we assume that the concentration gradients in a direérees. In Figs. 5 and 6 we present a quantitative analysis of
tion perpendicular to the glass plates can be neglected. THBe stationary growth regime for copper acetate and copper
concentration field can reasonably be considered as 2D arititrate. On the top panels are reproduced the averaged
our 2D interferometric measurements are therefore particuconcentration profiledplain lineg fitted by the equation
larly adapted. Moreover, in the case of dense patterns, the..+(Co—C..)(1—e ™ [*~%ld) in dashed lines, the ex-
distance between the branches of the deposit is smaller thaerimental profile parametrization is performed by adjusting
the size of the depleted zone. Far from the deposit, the corboth the diffusion lengthy and the growth interface position
centration depends essentially on the distance to the deposig at each time. The aggregate occupation ratio profiles are
so that the concentration field can be considered to be orsuperimposed in dotted lines. The fitted diffusion lendths
dimensional. These experimental observations justify qualiare plotted versus time in Figs(t§ and &b). In (c) of Fig. 5
tatively the 1D modeling. In the forthcoming, we presentand of Fig. 6 the temporal evolution of the interface front
guantitative evidence for the existence of stationary quasi-1[positionx, is reported. These two figures demonstrate unam-
growth regimes during copper electrodeposition in thin gagiguously that the system reaches a stationary growth re-
cells. gime, characterized by a constant speed and a steady concen-
In Fig. 4, we describe the method of extraction of concen+ration profile. Moreover, this phenomenon is robust since
tration profiles and their averaging along the width of thewe show that it is reproduced independently of the copper
cell. On the top panel of Fig.(d) the locations of two sec- salt. The generic character of these stationary dynamics is
tions are marked by dashed lines and the corresponding coshown in Fig. 7 where we have gathered the experiments
centration profiles are plotted with the same dashing on Figwith copper nitratgblack triangl¢ and copper acetatgray
4(b). In gray, between these two profiles, the averaged consquares It illustrates the equalityup to experimental uncer-
centration profile computed by summing the concentrationtaintieg of the fitted diffusion lengtH, and the ratioD/v,
along a parallel axis to the electrode and normalizing it bycomputed from the measured deposit velocity in the
the width of the free zoneoded in whit¢. The aggregate asymptotic regime, with the ambipolar diffusion coefficient
occupation ratio, computed as the ratio of the sum of blaclequal to 10°cn?s™! for copper nitrate and 0.6
pixels with respect to the total number of pixels for each10™° cn? s for copper acetate, as measured independently
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C. From the initial instability to the stationary regime:

c/C, the transitory period

In the previous section, we determined the steady interfa-
cial velocity by solving a one-dimensional transport equation
in the frame moving at the speed of the deposit. In this sec-
tion, we extend the relevance of the 1D model to the transi-
tory regime that occurs just after the destabilization of the
interface, prior to the stationary growth regime.

Before Sand'’s timeg [25], a flat and compact interface
advances in the laboratory frame with a veloc'tty<tS

=—JM/Z,Fpcopper (Pcopper IS the density of the compact
copper deposit In this growth regime, the interface dis-
placement is transmitted to the fluid without modification;
they both move at the same speed. In the moving frame, a
simple diffusion equation is recovered forts.

, After the destabilization, there is a sudden acceleration of
1000 2000 the growth and a porous deposit advances in an almost mo-
t (s) t (s) tionless fluid with a velocity:ww(t)=—jM/z,Fp(t). The

transport equation in the moving frame includes the relative

FIG. 6. Stationary growth regime in the electrodeposition of yotion of the fluid with respect to the deposit and is similar
copper nitrate(a) Concentration profiles extracted from experimen- to Eq. (5).

tzl)]dzta(ﬁle;in Cug’et.ﬁtte.d tby erﬁo?ential stationary pro1;i_|[£q.. 15 Looking for a stationary solution of EqS), we found in
(8)] (das ed curvgstime interval between successive profiles: 125 " ina asymptotic velocity (=)= —j (1—t*)/FC.,
s. The ratio of sites occupied by the aggregate is plotted with a_z Fu_E. . The transition from the slow arowth regime at
dotted line.(b) Temporal evolution of the diffusion lengtft) Tem- T e 9 9

poral evolution of the deposit length, computed from the deposif’Kts to the stationary growtls () is a fundamental issue
picture (plain curve or from the fit of the experimental concentra- that we discuss in the sequel, under the assumption of a 1D
tion profiles with Eq.(8) (symbols. [Cu(NOs),]=0.75 mol I'%, | model. To simplify our discussion we make the following
=40 mA cmi 2, approximations: (i) v is negligible before Sand’s time and
will therefore be approximated to zero, since the deposit is
very compact14]. (ii) The interfacial concentration will

be assumed to vary very slowly beyond Sand’s time, in such
a way that it can be considered as stationary. This follows

c!enti theﬂr\ngasureﬁ mtzrfaglal \\//\? I00|t§[/, ?r?dt iﬂe Zt_';?d _d'ffu'from the fact that the interfacial concentration gets close to
sion length[Figs. 5b) and b)]. We note that the diffusion zero at Sand’s time, and does not seem to change at longer

lengths are all greater than 1@0n, that is, greater than the times, as shown in Figs. 5 and 6.
depth of the cell(50 um), which justifies afterwards that In order to get an approximation af(t) after Sand's

these processes can be considered as quasi-one-dimensiogghe e have to solve Eq5) with the boundary conditions
In this figure the set of experiments corresponds to a range of

current density: 10—80 mA ci? and of copper salt concen- C({=%%,1)=C,,
tration 0.2M to 0.79M. The smaller diffusion lengths have
been obtained for greater current densities and smaller con-

05}

by our interferometry techniqul6,29. The error bars ac-
count for uncertainties on the values of the diffusion coeffi-

centration of salt. C({=0)=0,
=~ j(1-t")
0.8 : : — 3,C(L,V)]g=0=— ~—Fp (14
—~ |-
é 0.6 _ L | and the initial condition
~ . [ X -
o) (&3] . +
- i 1E - J(1-t7)
0.4 C(¢tg)=C.+ “ED
/Dt 5 {
02t t _ _
x{z - exp{ 4Dt) gerfc(z\/D_t ]
0 ‘ ‘ ' (15
0 0.2 0.4 0.6 0.8
D/v (mm) with \ts=—FC.JaD/[2j(1—t")]. Equation(15) is the

analytical solution of Eq(1) for a fixed current reduction
FIG. 7. Comparison of the fitted diffusion length from experi- process, starting from an homogeneous concentration and
mental concentration profiles with E(8) and the measured veloc- written for t=tg [25]. The interfacial velocity just after
ity of the growth. Sand’s time can be deduced by a straightforward computa-
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1 Ha) ' ' ' i files can be computed numerically. We observe in Fig) 8
that the system spontaneously converges towards a station-
C(¢) (t—t5)/ts ary regime of growth where the concentration profile no
—— 0.0185 longer changes. The temporal evolution of the growth
—— 0702 speed, obtained by numerical simulations, is also given
05| — ;Zi‘; | in Fig. 9. Figure 8a) shows the similarity between the tem-
- 5‘714 poral evolution of the numerical concentra'tl'on prof|le§ and
_ ares those extracted from the electrodeposition experiment
[see Fig. &)]. This shows that even in the transitory regime,
the 1D model can be used as a first basis for predicting
the characteristic relaxation time. A more precise verifica-
Of s tion of the similarity of the temporal behavior of both nu-
0 1 2 3 4 5 merical profiles and experimental profiles is given in Fig. 10
¢/1y where we have plotted the mean distance between
1 5 ; . . ; each profile and the asymptotic profile with respect to time:
C(é) (t-t)/t,
— VI LC(LH)—C(£,2)]%dE N [5[C(¢,ts) — C(4,%)]1%dL.
— 0.10
— 025
0.5+ —— 040 ] For the experimental plofplain curve, we have computed
— 0.7 the mean distance between each experimental profile at a
— 105 given time with the best fit of the exponential solution. The
essential conclusion of this figure is that in both theoretical
(1D) and experimental cases, the characteristic duration of
0 . . the transitory regime is close to the value of the Sand’s time

ts. We also note in the insert of Fig. 10 that the distance to
0 1 2 3 4 5 . . .
£/l the asymptotlc profile decays exponentially only fortg .
>b5tg, which means that one cannot capture the short time
FIG. 8. Plot of the temporal evolution of the concentration pro- characteristics of the transitory period through the linear sta-
file in the transitory regime, from Sand's time to the stationarybility analysis of the asympotics. At that time, the correspon-
growth regime.(a) Numerical resolution of the 1D diffusion equa- dence between the 1D model and the experiment means that
tion (5). (b) Experimental data obtained from electrodeposition ofbeyond Sand’s time the diffusion layer has spread on length
copper nitrate with the same parameters as in Fig. 6. scales that are greater than the microscopic details of the
deposit and that its global dynamics can be approximated by

tion, assuming tha#,C({=04)=0. In that case the growth & 1D model.
speed is related to the spatial derivativeCothrough

D. From diffusion-limited to buoyancy driven

- Dﬂzza(&tsﬂg:o 19 convection-limited regimes
&gﬁ(ats)lg:o As shown in the previous section, the hypothesis of con-

centration field stationarity is suitable for understanding the

, = . 2= velocity of the interface in the case of thin cells, in which
W'Fh &g(i(g,ts)h:(): —j(1-t")/FD and aé_zc(g’tS)'f:O buoyar):cy driven convection is negligible. However, the re-
=j(1-t")/(FDy7Dts). One gets the relation lation v ~u_E has been checked for a large range of experi-
2i(1—t 20 (t=20 mental parameters, including thick_ _cem]. In.this section,

I +) — vl ) _ 17y we show that during electrodeposition in thick cells, where

FmC. ™ the growth instability is driven by buoyancy driven convec-
) ) ) ) tive diffusion, both concentration and velocity fields reach a
This means that at Sand’s time the interface velocity evolvegieady state in the moving frame.
instantaneously from a null value to a finite value when the  gjng thick cells 70 um), the concentration gradients
interfacial concentration drops to zero. This unphysical disproduced by reduction and oxidation on the cathode and an-
continuity can be avoided if one assumes that the electrodgye, respectively, imply density gradients that induce, from
gets unstable just before Sand's tifit]. Nevertheless, as each electrode, the propagation of convective rolls through
observed in experiments, Sand’s time corresponds to a shajRe cell with a square root of time laj7,19. As a conse-
acceleration of the growth speed that is expressed in a verfence, the concentration of copper salt is no longer homo-
schematic form here, as a discontinuity. With a direct nugeneous along the direction perpendicular to the glass plates
merical simulatior(finite difference schemeof the diffusion  anq the interferometric measurement can only capture its av-
equation(5), starting from the analytical solutiofiS) with  erage along this direction. The shape of the concentration

EZ(O)=0, the temporal evolution of the concentration pro- profiles computed by Chazalvil9] is in good agreement

U(t:ts):

U(t:ts):_
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1 ‘ time. Once again, the plots of Fig. 11 bring evidence for the
occurrence of steady growth regimes in thick cells. To con-
firm this evidence, we plot in Fig. 18) the evolution of the
1D average concentration profiles in the laboratory frame.
The convergence of these concentration profiles towards an
0.5+ 1 asymptotic shape is illustrated in Fig.(b2where a shift of
the abscisse at each tinfadjustment by handallows the
superimposition of all the concentration profiles.

With the same assumption as was done at the end of Sec.
, ‘ Il (i.e., in the stationary regime the flux of cations is invari-
0 5 10 ant in space and from the fact that far enough from the

(t—tg)/ts electrode neighborhood, the buoyancy driven convection is

negligible, we get the same linear relatitkB) for v versus
FIG. 9. Plot of the temporal evolution of the growth speed in theihe pulk electric field.
transitory regime, from Sand’s time to the stationary growth regime
computed by the numerical resolution of the 1D diffusion equation
(5) with boundary condition$17).

V/Viim

— v{ts)/ Viim

E. Discussion of the occurrence of 1D dynamics

We performed experiments with sulfate, chloride, nitrate,
with optical measuremen{49,30 during the period prior to and acetate copper salts. Compared to previous studies, we
electrode destabilization, but there has been no quantitativesed concentrated solutioffsom 0.2M to 0.75M), in order
investigation of further growth regimes. Chazalviel proposedo reach a good signal to noise ratio in the interferometric
that at longer times, the deposit would grow at constantinalysis. The minimal current used was close to
speed and would push away the depleted zone whose si2® mA cm 2. For smaller values, the growth is too slow to
would remain constant. This picture is in agreement with ouibe performed in open cells. This current density corresponds
concentration measurements in both ttéee Figs. 5 and)6 to a growth speed of around onems ' The maximal
and thick (see below cells. Figures 11 and 12 report the current is limited by the requirement on the diffusion length
interferometric analysis of copper electrodeposition fromto be larger than the thickness of the cellg
copper sulfate 0)2 in a 250um cell. In Fig. 11, we plotthe =C_FD/[|j|(1-t")]> 4, that is,|j|<400 mA cm 2 We
size of the depositmean front positionand of the depleted therefore select the experiments withj| less than
zone as a function of time. The size of the depleted zone i$00 mA cm 2
defined as the distance between the initial cathode position With copper acetate, nitrate and chloride, whatever the
and the position in the cell where the concentration reachesarameter range tested, we obtained deposits whose struc-
95%Cy, k. During the depletion period, we find that the size tural wavelengtimean distance between the treissof the
of the depleted zone scales ¢ in close agreement with order of or smaller than the diffusion lengffigs. 13b),
our preceding measuremerit30] and Chazalviel's predic- 13(c), and 13d)], and where the aggregate envelope is easily
tions [19]. After this induction period, both the deposit size defined, which validates the 1D analygias discussed in
and the length of the depleted zone increase linearly witlFigs 4—6. The situation is quite different in the case of cop-
per deposition from copper sulfate salt, as illustrated in Fig.
13(a). In all the experiments performed with copper sulfate,
the distance between the trees has been found to be larger
than the diffusion length. In the deposit shown in Fig(&3
it is, moreover, larger than the size of the picture.

One important question remains, which concerns the ac-
tual convergence of the real experiment towards such station-
ary growth regimes. The fact that the numerical simulations
show that in one dimension the system converges spontane-
ously towards a stationary regime shows simply that if in the
experiment the trees that emerge from the instability of the
interface do not perturb too much the diffusion layer in such
a way that the system can still be approximated as a one-
. . L dimensional one, then the experiment is likely to converge
0 1 2 3 towards a stationary regime. The physical reasons for this 1D

(t—tg)/t behavio_r remgin an open question. A Complete simulatio_n of
5//8 a two-dimensional model of electrodeposition could possibly

FIG. 10. Mean-square dispersion of concentration profiles witi?"iNg Some hints for solving this important issue.
respect to the asymptotic profilsee text In dotted line, the nu- To explain both the stability of the envelope of the growth
merical resolution of the 1D diffusion equatiéB), in plain line, the ~ @nd the distance between the branches, comparison of the
experimental data obtained from electrodeposition of copper nitratediffusion length and branch spacing is quite instructive. The
with the same parameters as in Fig. 6. In the inset, we show th&et of experimental runs that we have already performed sug-
numerical data for a longer tim@lotted ling and the theoretical gests that these two lengths are of the same order of magni-
decay corresponding to a linear regiuashed ling tude for DBM. Nevertheless, the real situation is more com-

AC /Chn, (arb. units)
()
(%))
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FIG. 11. Stationary dynamics in diffusoconvective growth
experiments. The two curves show the propagation of both the
diffusoconvective front and of the copper electrodeposit.
[CuSO)]=0.2mol'l, j=8mAcm? thickness of the cell
250 um.

5 mm

plex because the deposit cannot be characterized by a single FIG. 13. Interferometric characterization of concentration maps

length as we have done for the concentration field. As Around copper electrodeposits obtained from different copper salts.
— -1 5 2

matter of fact, the distance between the tregg and their (8 Copper sulfate{CuSQ,)]=0.5 mol I, j=40 mAcm “ (b)

- . . Copper chloridd Cu(Cl,)]=0.5 mol I'%, j=27 mA cm 2. (c) Cop-
width (w,) are likely to be valuable parameters for modeling per nitrate[CUNOY),]=0.5 mol I'%, | =48 mA cm 2. (d) Copper

acetatd Cu(Ac),]=[Cu(CH;C00),]=0.2 mol I'%, j=12 mAcm 2.

Cc/C, . .
/ the internal structure of the deposit. The copper concentra-

tion in a finger(related to its porosifycan probably be in-
terpreted as arising from a microscopic instabilityl4] and

is linked to the two macroscopic lengths of the deposit by the
relation

0.5

Cw _C Wt
1—t+ - fingerwt+dtv

(18)

the latter ratio being the fraction of the cell that is filled by
the deposit andC../(1—t™) the mean copper concentration

in the deposit deduced from the expression gorThe un-
derstanding of such a morphology selection lies beyond the
scope of our one-dimensional analysis and deserves further
experimental investigations.

c/C.

05+t

IV. CONCLUSION

We have discussed here the occurrence of stationary
: : : - growth dynamics in electrodeposition of copper. We have
s 4 3 € ! 0 performed a quantitative analysis of these processes, based
¢ = ¢ (mm) on interferometric measurements. We checked that these re-
FIG. 12. (a) Concentration profiles measured by interferometryglmes can be descrlbed_ as 1'_3 d'ﬁus'or_"“m'ted processes
in diffusoconvective growth experiment, in dotted lines are repre-2nd that the growth velocity varies as the inverse of the mea-
sented the occupation ratio of the deposit in the cell, the concentra3ured diffusion length, which describes the spreading of the
tion profiles prior to Sand’s time are plotted in dashed. The timedepletion layer in front of the deposit. Although this picture
interval between each profile is167 s.(b) Superimposed concen- happens to be quite relevant for describing the global dynam-
tration profiles obtained by a shift of the profiles(@f (adjustment  ics, it describes neither the internal structure of the aggre-
by hand [Cu(SQ,)]=0.2 mol I'Y, j=8 mA cm 2, thickness of the gates(in particular, the number of trees cannot be predicted
cell 250 um. by the 1D model nor the stability of the flat growth enve-

L)
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